and rise to the surface, where they may receive the influence of light and air. In examining the surfaee-mud of a shallow rainwater pool, in a recent excaration in brick clay, he found little else but an abundance of minute diatomes. He was not suffieiently familiar with the diatomes to name the speeies, but it resembled Navicula radiosa. The little diatomes were very active, gliding hither and thither, and knocking the quartz sand grains about. Noticing the latter, he made some comparative measurements, and found that the Navicule would move grains of sand as mueh as trenty-five times their own superficial area, and probably fifty times their own bulk and weight, or perhaps more.

Dr. J. Gibbons Hunt made the following remarks:-

While examining, this summer, into the structure of some of the so-ealled inseetivorous plants, but more especially into the andtomy of the genus Nepenthes, I observed a part which I have not seen expressed before, and of suffieient interest, perhaps, to go upon reeord.

In the regetable kingdom it is exeeedingly rare to meet with glands which have distinet excretory ducts. Some authors deny their existenee entirely; but in Nepenthes rafflesiana. N. distillatoria, and N. phyllamphora, and probably in all the species, are large eylindrical glands which pour out their seeretion through distinct excretory ducts. In N. distillatoria thiese glands are, on an average, about the one-thirty-fifth of an inch long, and the one-twentieth of an inch wide, while the clucts measure about the one-thirtieth of an ineh in length. In the Rafflesiana the glands and duets are much larger. A dense tissue of eells surrounds and thoronghly imbeds these glands in Nepenthes, and this peenliarity of position renders excretory duets necessary for the seeretion to find its way into the pitchers.

In the regetable kingrlom it is the rule for glands to be loeated on surfaces, but in Nepenthes where one system of glands is imbedded the duet becomes neeessary, and so far as I know is the only instance of such cluets among plants.

September 22.

The President, Dr. Ruscienberger, in the ehair.
Thirty-fire members present.
Remarks on Sponges_Prof. Leidy remarked that the animal nature and strueture of the sponges were first clearly made known by Mr. H. J. Carter, of England, and Prof. H. James Clark, of this country. The sponges are compound, flagellate infusoria. The sponge infusorium had been appropriately named by Mr. Carter the spongozoon, the exaet eharacters of which were first
noted by Prof. Clark, and confirmed by Mr Carter. The spongozoon is a globular cell, surmounted by a delicate cup, from the bottom of which projects a flagellmm. The little animals are situated on the interior of hollow spheres of the sponges sustained by the skeleton of the compressed animal, whether this be corneous, as in the common sponge, or whether it be siliceous or calcareons. The observations of Prof. Clark had been made on a fresh water sponge, to which he had given the name of Spongilla arachnoidea. Mr. Carter's observations had been made on hoth freshwater sponges and the different classes of marine sponges. Prof. Leidy at first supposed that the sponge described by l'rof. Clark might be the one he had formerly noticed muder the name of Spongilla fragilis (Proc. A. N. S. 1851, 278), but comparison proved them to be different. They are both of the same color, but the siliceous spicules of S. arachnoidea are stated to be tuberculate, while they are smooth in S. fragilis. Dr. Leidy lad examined the spongozoon of the latter, and found that it presented the same essential structure as described by Prof. Clark and Mr. Carter in other sponges.

Prof. Leidy further remarked that he had found several specimens of the curious rhizopod, discovered by Cienkowski, and named by him Clathrulina elegans. They were found among Utricularia, but thongh retaining their stems were mattached and apparently dead. One of the specimens presented a peculiar and as yet mexplained cliaracter. On one side of the laticed head the orifices were capped with little inverted, hemispherical cups, from the top of which projected a finnel like the enp of the spongozoa. Prof. Leidy was pmsuing his search for the living and attached Clathrulina.

Prof. Leeds made some remarks concerning a remarkable mineral found in a bank of white sand near Fayetteville, N. C. It was, in appearance, a rod of glass, four feet in length and two inches in diameter, which was made np of a great number of irregular fragments. These fragments were highly polished on one sidethe side apparently turned toward the hollow axis of the rod, and excessively contorted on the exterior side. They consisted almost entirely of silex, the remainder being chiefly oxide of iron. Accurate analysis showed that the percentages of the constitucnts in these siliceous fragments and in the sand found in the hollow core of the rod were the same. On accomnt of this identity in composition, and the incompetency of any other known agent to produce such a fusion of almost pure silex, it was concluded that this "rod of glass" was a result of lightning-a lightning-tube or" fulgurite, as such products have been called.

Prof. Leeds also gave the particulars concerning a great eleration of temperature which had occurred in the adit level of a lead mine in Missonri, where the heat had suddenly risen from 60° to
over 100°, and had compelled the workmen, for the time being, to suspend work. The earth was found to contain over 75 per cent. of sulpliate of protoxide of iron, and the heating had been due to the rapid absorption of oxygen by sulphuret of iron, disseminated throughout the earth in a finely divided condition.

Change of Mabit through Fungoid Agency.-Mr. Thomas MeeIIAN referred to a former communieation in which he exhibited specimens of Euphorbia cordata, or E. humistrata, collected by him in the Rocky Momntains, and which, normally procumbent, had assumed an erect habit on being attacked by a fungulus Acidium Euphorbiæ hypericifoliæ.

He now found that the common trailing Euphorbia of our section, E. maculata, when attaeked by the same fungulus, assumed the same erect habit. There was an additional interest in this observation, from the fact that with change of habit of growth there was a whole change in specific character in the direction of E. hypericifolia. In a comparison of the leading charaeters of the two spceies, we see that in E. maculata there is a profusely hairy stcm, while that of E.hypericifolia is nearly smooth. The same is true of the fruit. The leaves of the former species are very oblique at the base-the latter nearly regular. The flowers are producerl in all the axils. In the E. hypericifolia the stems have a tendency to be nodose at the joints, while E : maculata is nearly free from this eharacter, and the flowers are mainly in heads at the ends of the branches. The E. maculata, after the fungoid attack becoming ercet, also becomes nodose, and lias the flowers on the ends of the comparatively smooth branchlets, while the leaves have lost their pointed obliquity ; and, in short, all the characters make an intermediate between the two species.

He said it would not be fair to assume, from these facts, that Euphorbia hypericifolia was an evolution from E. maculata, but, as there could be no doubt that nutrition was one of the factors in the government of form, we could say that certain phases of mutrition, brouglit about by an attaek of a minute fungus, would change the characters to the direction of those in that species.

September 29.

The President, Dr. Ruschenberger, in the chair.
Sixtcen members present.
There not being a sufficient number of members present for the transaction of business, in accordance with the By-Laws, the meeting adjourned until October 6.

On favorable report of the Committee to which it was referred, the following paper was ordered to be printed:-

